elektroenergetika
POWER SYSTEMS

NEWS

EVENTS
BOOKS

BLOG
UNIVERSITIES

NIKOLA TESLA
LINKS

CONTACT
elektroenergetika POWER

SYSTEMS


Supplies
All power systems have one or more sources of power. For some power systems, the source of power is external to the system but for others, it is part of the system itself—it is these internal power sources. Direct current power can be supplied by batteries, fuel cells or photovoltaic cells. Alternating current power is typically supplied by a rotor that spins in a magnetic field in a device known as a turbo generator. There have been a wide range of techniques used to spin a turbine's rotor, from steam heated using fossil fuel (including coal, gas and oil) or nuclear energy to falling water (hydroelectric power) and wind (wind power). The speed at which the rotor spins in combination with the number of generator poles determines the frequency of the alternating current produced by the generator. All generators on a single synchronous system, for example, the national grid, rotate at sub-multiples of the same speed and so generate electric current at the same frequency. If the load on the system increases, the generators will require more torque to spin at that speed and, in a steam power station, more steam must be supplied to the turbines driving them. Thus the steam used and the fuel expended directly relate to the quantity of electrical energy supplied. An exception exists for generators incorporating power electronics such as gearless wind turbines or linked to a grid through an asynchronous tie such as a HVDC link — these can operate at frequencies independent of the power system frequency.

Loads
Power systems deliver energy to loads that perform a function. These loads range from household appliances to industrial machinery. Most loads expect a certain voltage and, for alternating current devices, a certain frequency and number of phases. The appliances found in residential settings, for example, will typically be single-phase operating at 50 or 60 Hz with a voltage between 110 and 260 volts (depending on national standards). An exception exists for larger centralized air conditioning systems as in some countries these are now typically three-phase because this allows them to operate more efficiently. All electrical appliances also have a wattage rating, which specifies the amount of power the device consumes. At any one time, the net amount of power consumed by the loads on a power system must equal the net amount of power produced by the supplies less the power lost in transmission. Making sure that the voltage, frequency and amount of power supplied to the loads is in line with expectations is one of the great challenges of power system engineering. However it is not the only challenge, in addition to the power used by a load to do useful work (termed real power) many alternating current devices also use an additional amount of power because they cause the alternating voltage and alternating current to become slightly out-of-sync (termed reactive power). The reactive power like the real power must balance (that is the reactive power produced on a system must equal the reactive power consumed) and can be supplied from the generators, however it is often more economical to supply such power from capacitors

Electric motor
An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates with a reversed flow of power, converting mechanical energy into electrical energy. Electric motors can be powered by direct current (DC) sources, such as from batteries, or rectifiers, or by alternating current (AC) sources, such as a power grid, inverters or electrical generators. Electric motors may be classified by considerations such as power source type, construction, application and type of motion output. They can be powered by AC or DC, be brushed or brushless, single-phase, two-phase, or three-phase, axial or radial flux, and may be air-cooled or liquid-cooled.

Conductors
Conductors carry power from the generators to the load. In a grid, conductors may be classified as belonging to the transmission system, which carries large amounts of power at high voltages (typically more than 69 kV) from the generating centres to the load centres, or the distribution system, which feeds smaller amounts of power at lower voltages (typically less than 69 kV) from the load centres to nearby homes and industry.Choice of conductors is based on considerations such as cost, transmission losses and other desirable characteristics of the metal like tensile strength. Copper, with lower resistivity than aluminum, was once the conductor of choice for most power systems. However, aluminum has a lower cost for the same current carrying capacity and is now often the conductor of choice. Overhead line conductors may be reinforced with steel or aluminium alloys. Conductors in exterior power systems may be placed overhead or underground. Overhead conductors are usually air insulated and supported on porcelain, glass or polymer insulators. Cables used for underground transmission or building wiring are insulated with cross-linked polyethylene or other flexible insulation. Conductors are often stranded for to make them more flexible and therefore easier to install. Conductors are typically rated for the maximum current that they can carry at a given temperature rise over ambient conditions. As current flow increases through a conductor it heats up. For insulated conductors, the rating is determined by the insulation.[33] For bare conductors, the rating is determined by the point at which the sag of the conductors would become unacceptable.

Electrical substation
Substations generally have switching, protection and control equipment, and transformers. In a large substation, circuit breakers are used to interrupt any short circuits or overload currents that may occur on the network. Smaller distribution stations may use recloser circuit breakers or fuses for protection of distribution circuits. Substations themselves do not usually have generators, although a power plant may have a substation nearby. Other devices such as capacitors, voltage regulators, and reactors may also be located at a substation. Substations may be on the surface in fenced enclosures, underground, or located in special-purpose buildings. High-rise buildings may have several indoor substations. Indoor substations are usually found in urban areas to reduce the noise from the transformers, for reasons of appearance, or to protect switchgear from extreme climate or pollution conditions. A grounding (earthing) system must be designed. The total ground potential rise, and the gradients in potential during a fault (called touch and step potentials),[6] must be calculated to protect passers-by during a short circuit in the transmission system. Earth faults at a substation can cause a ground potential rise. Currents flowing in the Earth's surface during a fault can cause metal objects to have a significantly different voltage than the ground under a person's feet; this touch potential presents a hazard of electrocution. Where a substation has a metallic fence, it must be properly grounded to protect people from this hazard.

Transformer
A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Transformers are used to change AC voltage levels, such transformers being termed step-up or step-down type to increase or decrease voltage level, respectively. Closed-core transformers are constructed in 'core form' or 'shell form'. When windings surround the core, the transformer is core form; when windings are surrounded by the core, the transformer is shell form. Shell form design may be more prevalent than core form design for distribution transformer applications due to the relative ease in stacking the core around winding coils. Core form design tends to, as a general rule, be more economical, and therefore more prevalent, than shell form design for high voltage power transformer applications at the lower end of their voltage and power rating ranges (less than or equal to, nominally, 230 kV or 75 MVA). At higher voltage and power ratings, shell form transformers tend to be more prevalent.

Capacitors and reactors
The majority of the load in a typical AC power system is inductive; the current lags behind the voltage. Since the voltage and current are out-of-phase, this leads to the emergence of an "imaginary" form of power known as reactive power. Reactive power does no measurable work but is transmitted back and forth between the reactive power source and load every cycle. This reactive power can be provided by the generators themselves but it is often cheaper to provide it through capacitors, hence capacitors are often placed near inductive loads (i.e. if not on-site at the nearest substation) to reduce current demand on the power system (i.e. increase the power factor). Reactors consume reactive power and are used to regulate voltage on long transmission lines. In light load conditions, where the loading on transmission lines is well below the surge impedance loading, the efficiency of the power system may actually be improved by switching in reactors. Reactors installed in series in a power system also limit rushes of current flow, small reactors are therefore almost always installed in series with capacitors to limit the current rush associated with switching in a capacitor. Series reactors can also be used to limit fault currents. Capacitors and reactors are switched by circuit breakers, which results in moderately large step changes of reactive power. A solution to this comes in the form of synchronous condensers, static VAR compensators and static synchronous compensators. Briefly, synchronous condensers are synchronous motors that spin freely to generate or absorb reactive power. Static VAR compensators work by switching in capacitors using thyristors as opposed to circuit breakers allowing capacitors to be switched-in and switched-out within a single cycle. This provides a far more refined response than circuit-breaker-switched capacitors. Static synchronous compensators take this a step further by achieving reactive power adjustments using only power electronics.

Power electronics
Power electronics are semiconductor based devices that are able to switch quantities of power ranging from a few hundred watts to several hundred megawatts. Despite their relatively simple function, their speed of operation (typically in the order of nanoseconds) means they are capable of a wide range of tasks that would be difficult or impossible with conventional technology. The classic function of power electronics is rectification, or the conversion of AC-to-DC power, power electronics are therefore found in almost every digital device that is supplied from an AC source either as an adapter that plugs into the wall (see photo) or as component internal to the device. High-powered power electronics can also be used to convert AC power to DC power for long distance transmission in a system known as HVDC. HVDC is used because it proves to be more economical than similar high voltage AC systems for very long distances (hundreds to thousands of kilometres). HVDC is also desirable for interconnects because it allows frequency independence thus improving system stability. Power electronics are also essential for any power source that is required to produce an AC output but that by its nature produces a DC output. They are therefore used by photovoltaic installations. Power electronics also feature in a wide range of more exotic uses. They are at the heart of all modern electric and hybrid vehicles—where they are used for both motor control and as part of the brushless DC motor.

Protective devices
The Power systems contain protective devices to prevent injury or damage during failures. The quintessential protective device is the fuse. When the current through a fuse exceeds a certain threshold, the fuse element melts, producing an arc across the resulting gap that is then extinguished, interrupting the circuit. Given that fuses can be built as the weak point of a system, fuses are ideal for protecting circuitry from damage. Fuses however have two problems: First, after they have functioned, fuses must be replaced as they cannot be reset. This can prove inconvenient if the fuse is at a remote site or a spare fuse is not on hand. And second, fuses are typically inadequate as the sole safety device in most power systems as they allow current flows well in excess of that that would prove lethal to a human or animal. The protective relays that detect a fault and initiate a trip are separate from the circuit breaker. Early relays worked based upon electromagnetic principles similar to those mentioned in the previous paragraph, modern relays are application-specific computers that determine whether to trip based upon readings from the power system. Different relays will initiate trips depending upon different protection schemes. For example, an overcurrent relay might initiate a trip if the current on any phase exceeds a certain threshold whereas a set of differential relays might initiate a trip if the sum of currents between them indicates there may be current leaking to earth. The circuit breakers in higher powered applications are different too. Air is typically no longer sufficient to quench the arc that forms when the contacts are forced open so a variety of techniques are used. One of the most popular techniques is to keep the chamber enclosing the contacts flooded with sulfur hexafluoride (SF6)—a non-toxic gas with sound arc-quenching properties


ee power systems

ee power systems

ee power systems

ee power systems

ee power systems

ee power systems

ee power systems

ee power systems

ee power systems

ee power systems

ee power systems

ee power systems

ee power systems